Socionext’s proprietary CHAIS1 high-speed converter technology is the latest in a series of IP offerings driving advanced systems for fibre optic networks. Developed in TSMC 16FF+ process technology, the high-speed ADC and DAC family has been designed to cover a broad sampling rate range from 15 to 103GSa/s (ADC H-family) and 70 to 120GSa/s (DAC H-family).

The high-effective resolution and wide-bandwidth characteristics of previous generations of CHAIS are supported in a smaller process node, enabling lower power SoC solutions for coherent optical transceivers. The high-effective resolution and wide-bandwidth characteristics of previous generations of CHAIS are now supported in a smaller process node, enabling lower power SoC solutions for coherent optical transceivers and high-speed test equipment but is also capable of supporting a whole range of other application areas.

ADC/DAC Test Chip Features (supported with DKs)
- Technology: 16nm FF+
- Resolution: 8-bit
- Sampling rate (Fs):
 - 70 - 120GSa/s (DAC H-family)
 - 15 - 103GSa/s (ADC H-family)
- Fractional DPLL per IQ pair
- ADC-specific features
 - Programmable analogue input range:
 - 0.5 – 1.7VPPDIFF
- DAC-specific features
 - Typical differential analogue output: 800mVPPDIFF

Test Chip (ES)
Evaluation of Socionext’s 16nm CHAIS converters can be conducted via a new customized hardware and software platform. Test chips for the 34 - 120GSa/s 8-bit ADC family have 2 ADC channels (one IQ pair). Each of these channels has a capture RAM to store 512k X 8-bit samples. The RAM contents can be accessed directly via the device SPI interface to the USB/FPGA interface on the accompanying evaluation board. Test chips for the 34 - 120GSa/s 8-bit DAC family have 2 DAC channels (one IQ pair) and each of these channels has 512k x 8-bit waveform memory.

Applications
- High-Speed Communications
- 100G to Terabit Systems
- Test & Measurement Equipment
- Industrial and Customer Applications

1 CHAIS – CHArge-mode Interleaved Sampler technology - which allows implementation of extremely fast, high resolution ADC with low power consumption that can be integrated with millions of gates in standard CMOS process
Development Kits [SNEUADCDAC16H-DK]

- 2x ES boards allowing for synchronous operation of 2x DAC & 2x ADC, or 4x ADC, or 4x DAC
- High-performance PCB with optimised analogue interfaces
- On-board Raspberry Pi® including easy to use GUI
- Optimised power supply boards for single 12V system operation
- Complete stand-alone system

Each Kit includes

- 2x Evaluation Boards with a soldered ES device on each
- 2x dedicated power supply boards
- Raspberry Pi® with full software package
- 1x Link (backplane) board with system clock sources
- 2x MXP70-2.4mm RF breakout cables for ADC/DAC interfaces
- RF, test and HDMI cables

Features

- USB/FPGA control interface [no hardware switches] for simplified set-up
- Synchronization of 2 Evaluation Boards in the kit to emulate 2 x IQ pair
- On-board clock sources
- High-bandwidth 8-way RF connector for ADC/DAC connections
- Power header for attaching auxiliary PSU board
- Optional powering from bench supplies via header
- Test ADCs to measure supplies and temperature

Part Numbers

- SNEUADCDAC16H
- ADC/DAC ES available from IP family information

This is a preliminary description of the 16nm CHAIS converter IP and is subject to updates and changes.